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ABSTRACT: The science of training large artificial neural networks is known as deep learning. DNNs can have 

hundreds of millions of parameters, allowing them to model complex functions like nonlinear dynamics. They 

create compact state representations from raw, high-dimensional, multimodal sensor data found in robotic systems, 

and unlike many machine learning methods, they don't require a human expert to hand-engineer feature vectors 

from sensor data at design time. Deep learning advances have sparked a flurry of research in the application of 

deep artificial neural networks to robotic systems over the last decade, with at least 30 papers published on the topic 

between 2014 and now. Using current research as examples, this review discusses the applications, benefits, and 

limitations of deep learning in relation to physical robotic systems. Its goal is to inform the broader robotics 

community about recent advances and to pique interest in and application of deep learning in robotics. 
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INTRODUCTION 

However, in physical robotic systems, where generating training data is generally expensive and 

suboptimal training performance poses a danger in some applications, DNNs can present unique 

challenges. Despite these obstacles, roboticists are developing innovative solutions, such as using 

digital manipulation to leverage training data, automating training, and combining multiple DNNs 

to improve performance and reduce training time[1][2]. Deep learning for robotics is a hot topic 

in academia, with at least 30 papers published on the topic between 2014 and the time of this 

writing. This review summarizes the findings of recent research, with a focus on the benefits and 

challenges of robotics. Following a primer on deep learning, a discussion of how common DNN 

structures are used in robotics and examples from recent literature is presented. There are also 

practical considerations for roboticists who want to use DNNs. Finally, future trends and their 

limitations, as well as strategies to mitigate them, are discussed. The basic principles of linear 

regression, and many of those same principles still apply to what deep learning researchers study. 

Several significant advancements, however, have gradually transformed regression into what we 

now refer to as deep learning[3].  

The addition of an activation function allowed regression methods to fit nonlinear functions for 

the first time. It also brought up some biological parallels with brain cells. Nonlinear models were 

then stacked in "layers" to create multi-layer perceptron’s, which are powerful models. In the 

1960s, a group of researchers independently figured out how to differentiate multi-layer 

perceptron’s, and by the 1980s, back propagation had become a popular method for training them. 

Multi-layer perceptron’s were quickly proven to be universal function approximates which meant 

they could fit any data, no matter how complex, with arbitrary precision using a finite number of 

regression units[4]. Backpropagation was the beginning of the deep learning revolution in many 

ways, but due to the problem of vanishing gradients, researchers still mostly limited their neural 

networks to a few layers. Deeper neural networks took an infinite amount of time to train. As early 
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as the 1980s, neural networks were successfully used to control robotics. Nonlinear regression was 

quickly recognized as having the functionality required for operating dynamical systems in 

continuous spaces, and fuzzy systems, which are closely related, appeared to be well suited for 

nominal logical control decisions[5]. Famously demonstrated that neural networks were effective 

for assisting vehicles in staying in their lanes as early as 1989. Neural networks, on the other hand, 

were still too slow to process entire images or perform the complex tasks required by many robotics 

applications. There are numerous robotics applications. Researchers began using graphical 

processing units (GPUs) to parallelize artificial neural network implementations. A matrix-vector 

multiplication step, which can be parallelized using GPUs, is the most significant bottleneck in 

training neural networks[6]. Hinton presented a training method for a multi-layered neural 

network, which he demonstrated to be effective.  

The near-simultaneous appearance of these technologies sparked a surge in research interest, 

propelling deep learning forward at an unprecedented rate. As hardware improved and neural 

networks became more practical, they were discovered to be increasingly effective in real-world 

robotics applications. RNNPB demonstrated in 2004 that neural networks could self-organize 

high-level control schema that generalized well with a variety of robotics test problems. In 2008, 

neuroscientists made advances in recognizing how animals achieved locomotion, and were able to 

extend this knowledge all the way to neural networks for experimental control of robots. In 2011, 

TNLDR demonstrated that deep neural nets could effectively model both state and dynamics from 

strictly unsupervised training with raw images of a simulated robot. Another relevant work is 

surveying applications for neural networks in perception for robot guidance[7]. In hindsight, we 

see that chess was considered in the early years of artificial intelligence to be representative of 

human intelligence over machines. After machines beat world-class chess players, a new 

emblematic task was needed to represent the superior capabilities of human intelligence. Visual 

recognition was largely accepted to be something easy for humans but difficult for machines. 

But now, with the emergence of deep learning, humans will not be able to claim that as an 

advantage for much longer. Deep learning has surged ahead of well-established image recognition 

techniques and has begun to dominate the benchmarks in handwriting recognition, video 

recognition, small-image identification, detection in biomedical imagine, and many others. It has 

even achieved super-human accuracy in several image recognition contests. Perhaps agility or 

dexterity will be a forthcoming achievement where machines will begin to demonstrate human-

like proficiency. If so, it appears that DNNs may be the learning model that enables it. The idea of 

using machine learning in controlling robots requires humans to be willing to relinquish a degree 

of control[8]. This can seem counterintuitive at first, but the benefit for doing so is that the system 

can then begin to learn on its own. This makes the system capable of adapting and therefore has 

potential to ultimately make better use of the direction that comes from humans. DNNs are well 

suited for use with robots because they are flexible and can be used in structures that other machine 

learning models cannot support. Four common structures for using DNNs with robots. Structure. 

It is one common model for facilitating ‘unsupervised learning. It requires two DNNs, called an 

encoder’ and a ‘decoder. In this configuration, only x needs to be supplied by the user. s is a ‘latent’ 

or internal encoding that the DNN generates. For example, x might represent images observed by 

a robot’s camera, containing thousands or even millions of values. The encoder might use 

convolutional layers, which are known to be effective for digesting images. By learning to reduce 

x to s, the auto encoder essentially creates its own internal encoding of ‘state.’ It will not 
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necessarily use an encoding that has meaning for humans, but it will be sufficient for the DNN to 

approximately reconstruct x. How are auto encoders useful in robotics? Sometimes, the robot 

designer may not know exactly what values are needed by the robot. Auto encoders enable the 

system to figure that out autonomously.  

This becomes especially useful when a hybrid of supervised and unsupervised learning is used. 

For example, the user can impose certain values in perhaps, positional coordinates or joint angles 

and the DNNs will learn to work with those values, using the other free elements in s for its own 

encoding purposes. Auto encoders may also be used to initialize some parts of Structure. 

Generative models are closely related to auto encoders. They utilize just the decoder portion of the 

model to predict observations from an internal representation of state. Structure C is a type of 

‘recurrent neural network,’ which is designed to model dynamic systems, including robots. It is 

often trained with an approach called ‘backpropagation through time. Many advances, such as 

‘long short term memory units,’ have made recurrent neural networks much stronger. In this 

configuration, u represents a control signal. u may also contain recent observations. An internal 

representation of future state, and x is a vector of anticipated future observations. The transition 

function approximates how the control signal will affect state over time. Just as with auto encoders, 

the representation of state can be entirely latent, or partially imposed by the user. If it were entirely 

imposed, the model would be prevented from learning.) If x includes an estimate of the utility, 

then this configuration is used in ‘model- based reinforcement learning’. Each of the various types 

of deep learning models are made by stacking multiple layers of regression models[9]. 

Within these models, different types of layers have evolved for various purposes. One type of layer 

that warrants particular mention is convolutional layers. Unlike traditional fully connected layers, 

convolutional layers use the same weights to operate all across the input space. This significantly 

reduces the total number of weights in the neural network, which is especially important with 

images that typically have hundreds of thousands to millions of pixels that must be processed. 

Processing such images with fully connected layers would require more than (100 K)2 to (1 M)2 

weights connecting each layer, which would be completely impractical. Convolutional layers were 

inspired by cortical neurons in the visual cortex, which respond only to stimuli with a receptive 

field. Ultimately, the underlying philosophy that prevails in the deep learning community is that 

every part of a complex system can be made to ‘learn.’ Thus, the real power of deep learning does 

not come from using just one of the structures described in the previous section as a component in 

a robotics system, but in connecting parts of all of these structures together to form a full system 

that learns throughout. This is where the ‘deep’ in deep learning begins to make its impact: When 

each part of a system is capable of learning, the system as a whole can adapt in sophisticated 

ways[10]. 

DISCUSSION  

Neuroscientists are even starting to recognize that many of the patterns evolving within the deep 

learning community and throughout artificial intelligence are starting to mirror some of those that 

have previously evolved in the brain. Doya identified that supervised learning methods (Structures 

A and C) mirror the function of the cerebellum, unsupervised methods Structure B learn in a 

manner comparable to that of the cerebral cortex, and reinforcement learning is analogous with the 

basal ganglia. Thus, the current trajectory of advancement strongly suggests that control of robots 

is leading toward full cognitive architectures that divide coordination tasks in a manner 
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increasingly analogous with the brain. The robotics community has identified numerous goals for 

robotics in the next 5 to 20 years. These include, but certainly are not limited to, human-like 

walking and running, teaching by demonstration, mobile navigation in pedestrian environments, 

collaborative automation, automated bin/shelf picking, automated combat recovery, automated 

aircraft inspection and maintenance, and robotic disaster mitigation and recovery. This paper 

identifies seven general challenges for robotics that are critical for reaching these goals and for 

which DNN technology has high potential for impact. learning complex, high-dimensional, and 

novel dynamics Analytic derivation of complex dynamics requires human experts, is time 

consuming, and poses a trade-off between state dimensionality and tractability. Making such 

models robust to uncertainty is difficult, and full state information is often unknown. Systems that 

can quickly and autonomously adapt to novel dynamics are needed to solve problems such as 

grasping new objects, traveling over surfaces with unknown or uncertain properties, managing 

interactions between a new tool and/or environment, or adapting to degradation and/or failure of 

robot subsystems. Also needed are methods to accomplish this for systems that possess hundreds 

(or even thousands) of degrees of freedom, exhibit high levels of uncertainty, and for which only 

partial state information is available. As with dynamics, control systems that accommodate high 

degrees of freedom for applications such as multi-arm mobile manipulators, anthropomorphic 

hands, and swarm robotics are needed. Such systems will be called upon to function reliably and 

safely in environments with high uncertainty and limited state information. Despite advances 

achieved over three decades of active research, robust and general solutions for tasks such as 

grasping deformable and/or complex geometries, using tools, and actuating systems in the 

environment (turn a valve handle, open a door, and so forth) remain elusive – especially in novel 

situations. This challenge includes the kinematics, kinetics, and grasp planning inherent in tasks 

such as these. advanced object recognition DNNs have already proven to be highly adept at 

recognizing and classifying objects.  

Advanced application examples include recognizing deformable objects and estimating their state 

and pose for grasping, semantic task and path specification e.g. go around the table, to the car, and 

open the trunk, and recognizing the properties of objects and surfaces such as wet/slippery floors 

or sharp objects that could pose a danger to human collaborators. interpreting and anticipating 

human actions. This challenge is critical if robots are to work with or among people in applications 

such as collaborative robotics for manufacturing, eldercare, autonomous vehicles operating on 

public thoroughfares, or navigating pedestrian environments. It will enable teaching by 

demonstration, which will in turn facilitate task specification by individuals without expertise in 

robotics or programming. This challenge may also be extended to perceiving human needs and 

anticipating when robotic intervention is appropriate. The proliferation of low-cost sensing 

technologies has been a boon for robotics, providing a plethora of potentially rich, high-

dimensional, and multimodal data. This challenge refers to methods for constructing meaningful 

and useful representations of state from such data. Robots will need to reliably execute high-level 

commands that fuse the previous six challenges to achieve a new level of utility, especially if they 

are to benefit the general public. For example, the command ‘get the milk’ must autonomously 

generate the lower-level tasks of navigating to/from the refrigerator, opening/closing the door, 

identifying the proper container milk containers may take many forms, and securely grasping the 

container. Recent robotics research that utilizes DNN technology according to these challenges, as 

well as the DNN structures discussed in the previous section. From this, several observations are 

made: First is that Structure   is clearly the most popular DNN architecture in the recent robotics 
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literature. This is likely explained by its intuitive nature, essentially learning to approximate the 

same function presented to it in the form of training samples. It also requires the least amount of 

domain knowledge in DNNs to implement. Robotics challenges, however, are not limited to the 

sort of classification and or regression problems to which this structure is best suited. Additional 

focus on applying Structures B, C, and D to robotics problems may very well catalyze significant 

advancement in many of the identified challenges. One of the purposes of this paper is to 

emphasize the potential of the other structures to the robotics community. Somewhat related is the 

fact that some cells in are empty. In the authors’ opinion, this is due to a lack of research focus 

rather than any inherent incompatibilities between challenges and structures. In particular, the 

ability of Structure to learn compact representations of state would be particularly useful for 

estimating the pose, state, and properties of objects. Structure A involves using a deep learning 

model to approximate a function from sample input–output pairs. 

This may be the most general-purpose deep learning structure, since there are many different 

functions in robotics that researchers and practitioners may want to approximate from sample 

observations. Some examples include mapping from actions to corresponding changes in state, 

mapping from changes in state to the actions that would cause it, or mapping from forces to 

motions. Whereas in some cases physical equations for these functions may already be known, 

there are many other cases where the environment is just too complex for these equations to yield 

acceptable accuracy. In such situations, learning to approximate the function from sample 

observations may yield significantly better accuracy. The functions that are approximated need not 

be continuous. Function approximating models also excel at classification tasks, such as 

determining what type of object lies before the robot, which grasping approach or general planning 

strategy is best suited for current conditions, or what the state of a certain complex object is with 

which the robot is interacting.  

The next section reviews some of the many applications for classifiers, regression models, and 

discriminative models that have appeared in the recent literature with robotics. A function 

approximating architecture with rectifiers to model the highly coupled dynamics of a radio-

controlled helicopter, which is a challenging analytic derivation and difficult system identification 

problem. Training data was obtained as a human expert flew the helicopter through various 

aerobatic maneuvers, and the DNN outperformed three state of- the-art methods for obtaining 

helicopter dynamics by about 60 percent. The time between a driver’s head movement and the 

occurrence of a maneuver varies with vehicle speed. The resulting system made predictions every 

0.8 s based on the preceding 5 s of data and anticipated maneuvers about 3.5 s before they occurred, 

with 90.5 percent accuracy. A great many works have used function approximating models in the 

domains of (1) detection and perception, (2) grasping and object manipulation, and (3) scene 

understanding and sensor fusion. The following three subsections describe recent works in each of 

these domains. Detection and Perception. DNNs have surged ahead of other models in the domains 

of detection and perception. They are especially attractive models because they are capable of 

operating directly on high-dimensional input data instead of requiring feature vectors that are hand-

engineered at design time by experts in machine learning and the particular application. This 

reduces dependence on human experts, and the additional training time may be partially offset by 

reducing initial engineering effort. The most challenging aspect of dealing with reinforcement 

learning models is the enormous amount of computing time required to train them. Although such 

models are extremely efficient after training, they often need a large number of training pattern 
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presentations before they converge to reflect accurate control rules. Taking the time to discover an 

efficient GPU-optimized implementation may therefore make a significant impact. Another useful 

approach is to practice with a virtual robot before trying to train with a real one. This saves time 

and money by reducing the wear and tear on physical equipment. Even if just a rudimentary 

simulation is available, a model that has been pre-trained on a comparable task will converge 

considerably faster than one that has been trained from scratch to suit the actual issue. Traditional 

Q-learning isn't immediately relevant to robots since they often work in an area with continuous 

activities. Actor-critic models, on the other hand, do a good job of addressing this issue. They use 

the continuous Q-table to regress actions, resulting in a final model that directly computes the 

optimal action given the current observation, which is ideal for robotics applications. 

CONCLUSION  

Deep learning has shown promise in significant sensing, cognition, and action problems, and even 

the potential to combine these normally separate functions into a single system. DNNs can operate 

on raw sensor data and deduce key features in that data without human assistance, potentially 

greatly reducing up-front engineering time. They are also adept at fusing high-dimensional, 

multimodal data. Improvement with experience has been demonstrated, facilitating adaptation in 

the dynamic, unstructured environments in which robots operate. Some remaining barriers to the 

adoption of deep learning in robotics include the necessity for large training data and long training 

times. Generating training data on physical systems can be relatively time consuming and 

expensive. One promising trend is crowdsourcing training data via cloud robotics. It is not even 

necessary that this data be from other robots, as shown by Yang’s use of general-purpose cooking 

videos for object and grasp recognition. Regarding training time, local parallel processing and 

increases in raw processing speed have led to significant improvements. Distributed computing 

offers the potential to direct more computing resources to a given problem but can be limited by 

communication speeds. There may also be algorithmic ways yet to be discovered for making the 

training process more efficient. For example, deep learning researchers are actively working on 

directing the network’s attention to the most relevant subspaces within the data and applying 

biologically inspired, sparse DNNs with fewer synaptic connections to train. 
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