# I-GENERALIZED METRIC SPACES AND SOME FIXED POINT THEOREMS 

Sunil Suman ${ }^{\mathbf{1}}$, Jayanta Biswas ${ }^{\mathbf{2}}$<br>${ }^{1}$ P.G. Department of Mathematics, Magadh University, Bodhgaya, Bihar, India. Email- sumansunil97@gmail.com<br>${ }^{2}$ Barasat Government College, Barasat , West Bengal, India. Email - jbiswas37@ gmail.com


#### Abstract

The aim of this paper is to establish the structure of I-generalized metric spaces as a concept of metric spaces, which is a kind of generalization of traditional generalized metric space structure. Some fixed point results for various contractive type mappings in the context of I-generalized metric spaces are presented. We also provide some definitions to illustrate the results presented herein.


Mathematics Subject Classification: 47H10, 54H25

Keywords: Fixed point, Cauchy sequence, contraction map, Housdorff space, sequentially convergence.

## 1. Introduction

The concept of metric spaces has been generalized in many directions. The notion of a metric space induces topological properties like open and closed sets which leads to the study of more abstract topological spaces.
In 2000, Branciari [4] introduced generalized metric spaces replacing triangular inequality by rectangular inequality and subsequently several fixed point results have been developed in this metric space.
A generalization of contraction mapping is in Banach contraction [4], uniformly locally contraction [5], Kannan contraction [8] mappings in generalized metric space.
Here we shall generalize these concepts and some more fixed point results [2] in I-generalized metric space.

## 2. Preliminaries

First we recall some notation and definitions that will be utilized in our subsequent discussion.

Definition (2.1) [I-uniqueness or I-equality] Let $X$ be a non-empty set and $f: X \rightarrow X$ be an idempotent map. Two elements $x$ and $y$ in $X$ are said to be I-unique with respect to $f$ if $f(x)=f(y)$; otherwise $x$ and $y$ are said to be I-distinct points in $X$.

Definition (2.2)[I-generalized metric space] Let X be a non-empty set, $f: X \rightarrow X$ be an idempotent map, i.e. , $f^{2}=f$. $A$ map $d: X^{2} \rightarrow[0, \infty)$ is said to be an I-generalized metric on $X$ iff $I_{1}: \forall x, y \in X, d(x, f(y))=0$ iff $f(x)=f(y)$ and $d(f(x), y)=0$ iff $f(x)=f(y)$.
I2: $d(x, f(y))=d(y, f(x))$ and $(f(x), y)=d(f(y), x), \forall x, y \in X$.
$I_{3}$ : for all $x, y \in X$ and for all I-distinct points $u, v \in X$ each of them I-distinct from $x$ and $y,(x, y) \leq$ $d(f(x), u)+d(f(u), v)+d(v, f(y))$.
The order triple $(X, d, f)$ is called an I-metric space. Elements of $X$ are said to be points in $X$.

Example (2.3): (i) Every I-metric space is clearly a I-g.m.s.
(ii) Every generalized metric space $(X, d)$ is clearly a I-g.m.s. with respect to the identity map on $X$.

Definition (2.4) [I-open sphere] Let ( $X, d, f$ ) be an I-metric space and $x \in X$ and $r$ be a positive real number. Then the set $S_{f}(x, r)=\{y \in X \mid d(x, f(y))<r\}$ is called the I-open sphere or I-open ball, with centre $x$ and radius $r$ in $X$.

Definition (2.5) [Convergence of a sequence] A sequence $\left\{x_{n}\right\}$ in an I-metric space ( $X, d, f$ ) is said to I-converge to a point $x$ of $X$, if for any $\varepsilon>0, \exists m \in \mathbb{N}$ such that $x_{n} \in S_{f}(x, \varepsilon), \forall n \geq m$. In this case $x$ is called I-limit of the sequence $\left\{x_{n}\right\}$.
A sequence which is not I-convergent in an I-metric space ( $X, d, f$ ), is called a non-I-convergent or an I-divergent sequence.

Definition (2.6) [Cauchy sequence] A sequence $\left\{x_{n}\right\}$ in an I-metric space ( $X, d, f$ ) is said to be an Icauchy sequence in $X$ if for any $\varepsilon>0, \exists n_{o} \in \mathbb{N}$ such that $d\left(f\left(x_{m}\right), x_{n}\right)<\varepsilon, \forall m, n \geq n_{o}$, i.e., $d\left(f\left(x_{n+p}\right), x_{n}\right)<\varepsilon, \forall n \geq n_{o}, \forall p \geq 1$.

Definition (2.7) [Complete I-metric space] An I-metric space ( $X, d, f$ ) is said to be I-complete if every I-cauchy sequence in $X$ I-converges to some point of $X$; otherwise ( $X, d, f$ ) is called I incomplete.

Definition (2.8) [I-fixed point] Let $X$ be a non-empty set and $f: X \rightarrow X$ is an idempotent map. A map $h: X \rightarrow X$ is said to have an I-fixed point $x(\in X)$ if $(f h)(x)=f(x)$.

Journal of The Gujarat Research Society

Definition (2.9) [I-continuity] Let $\left(X, d_{1}, f\right),\left(Y, d_{2}, g\right)$ be two I-generalized metric spaces. Then a function $h:\left(X, d_{1}, f\right) \rightarrow\left(Y, d_{2}, g\right)$ is said to be I-continuous at a point $a \in X$, if corresponding to every $\epsilon>0, \exists \delta>0$ such that $d_{1}(f(x), a)<\delta \Rightarrow d_{2}((g h)(x), h(a))<\varepsilon$.
$h$ is said to be I-continuous on $X$, if it is I-continuous at every point of $X$.

Definition (2.10) [I-injective mapping] Let $\left(X, d_{1}, f\right),\left(Y, d_{2}, g\right)$ be two I-generalized metric spaces. A mapping $h: X \rightarrow Y$ is said to be I-injective if for all $x_{1}, x_{2} \in X, h\left(x_{1}\right)=h\left(x_{2}\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$

Definition (2.11) [I-Housdorff space] An I-generalized metric space ( $X, d, f$ ) is said to be I-Housdorff, if for any two I-distinct points $x, y$ in $X$, there exists a positive real number $r$ such that $S_{f}(x, r) \cap S_{f}(y, r)=\Phi$.

Theorem (2.12) Let ( $X, d, f$ ) be an I-generalized metric space. Then
(i) $d(x, x)=0, \forall x \in X$, i.e., $\forall x, y \in X, x=y \Rightarrow d(x, y)=0$.
(ii) $d(x, f(y))=d(f(x), y)=d(f(x), f(y))=d(f(y), f(x)) \geq d(x, y), d(y, x), \forall x, y \in X$.
(iii) $d(x, f(x))=0, \forall x \in X$.

Proof: Trivial.

## 3. Main Results

Theorem (3.1) [Banach contraction principle] Let $(X, d, f)$ be an I-g.m.s. c $\in(0,1)$ and $h: X \rightarrow X$ be a map such that for each $x, y \in X, d((f h)(x), h(y)) \leq c d(x, y)$ with $y \neq f(x), x \neq f(y)$, then
(i) there exists a point $a \in X$ such that for each $x \in X$, the sequence $h^{n}(x)$ I-converges to $a$.
(ii) $(f h)(a)=f(a)$ and for each $b \in X,(f h)(b)=f(b) \Rightarrow f(a)=f(b)$, i.e., $h$ has an I-unique I-fixed point.

Proof: (i) Let $x \in X$ and consider the sequence $\left\{h^{n}(x)\right\}$. If $x$ is a periodic point for $h$, then $h^{k}(x)=x$ for some $k \in \mathbb{N}$ and then $d(x,(f h)(x))=d\left(h^{k}(x),\left(f h^{k+1}\right)(x)\right) \leq c d\left(h^{k-1}(x), h^{k}(x)\right)$ $\leq c d\left(h^{k-1}(x),\left(f h^{k}\right)(x)\right) \leq c^{2} d\left(h^{k-2}(x), h^{k-1}(x)\right) \leq c^{2} d\left(h^{k-2}(x),\left(f h^{k-1}\right)(x)\right)$ $\leq \cdots \ldots \leq c^{k} d(x, h(x)) \leq c^{k} d(x,(f h)(x)) \Rightarrow d(x,(f h)(x))=0$ (since $\left.0<c<1\right)$. $\Rightarrow(f h)(x)=f(x) \Rightarrow x$ is an I-fixed point of $h$.

Let $h^{n}(x) \neq h^{m}(x), \forall m, n \in \mathbb{N}$ with $m \neq n$.
Now $\forall y \in X, d\left(y,\left(f h^{4}\right)(y)\right) \leq d(f(y), h(y))+d\left((f h)(y), h^{2}(y)\right)+d\left(h^{2}(y),\left(f h^{4}\right)(y)\right)$
$=d(y,(f h)(y))+d\left(h(y),\left(f h^{2}\right)(y)\right)+d\left(h^{2}(y),\left(f h^{4}\right)(y)\right)$

ISSN: 0374-8588
Volume 21 Issue 16, December 2019
$\leq d(y,(f h)(y))+c d(y,(f h)(y))+c^{2} d\left(y,\left(f h^{2}\right)(y)\right)$
$=(1+c) d(y,(f h)(y))+c^{2} d\left(y,\left(f h^{2}\right)(y)\right)=\sum_{i=0}^{2 k-3} c^{i} d(y,(f h)(y))+c^{2 k-2} d\left(y,\left(f h^{2}\right)(y)\right)$, for $k=2$.
Let for any $\geq 2, d\left(y,\left(f h^{2 k}\right)(y)\right) \leq \sum_{i=0}^{2 k-3} c^{i} d(y,(f h)(y))+c^{2 k-2} d\left(y,\left(f h^{2}\right)(y)\right), \forall y \in X$.
Now $\forall y \in X, d\left(y,\left(f h^{2 k+2}\right)(y)\right) \leq d(f(y), h(y))+d\left((f h)(y), h^{2}(y)\right)+d\left(h^{2}(y),\left(f h^{2 k+2}\right)(y)\right)$
$=d(y,(f h)(y))+d\left(h(y),\left(f h^{2}\right)(y)\right)+d\left(h^{2}(y),\left(f h^{2 k+2}\right)(y)\right)$
$\leq d(y,(f h)(y))+c d(y, h(y))+c^{2} d\left(y, h^{2 k}(y)\right)$
$\leq d(y,(f h)(y))+c d(y,(f h)(y))+c^{2}\left(\sum_{i=0}^{2 k-3} c^{i} d(y,(f h)(y))+c^{2 k-2} d\left(y,\left(f h^{2}\right)(y)\right)\right)$
$=\sum_{i=0}^{2 k-1} c^{i} d(y,(f h)(y))+c^{2 k} d\left(y,\left(f h^{2}\right)(y)\right)$
Therefore by mathematical induction, we have
$\forall y \in X, d\left(y, h^{2 k}(y)\right) \leq \sum_{i=0}^{2 k-3} c^{i} d(y,(f h)(y))+c^{2 k-2} d\left(y,\left(f h^{2}\right)(y)\right), \quad \forall k \geq 2$
Similarly, by mathematical induction, we shall get
$d\left(y,\left(f h^{2 k+1}\right)(y)\right) \leq \sum_{i=0}^{2 k} c^{i} d(y,(f h)(y)), \forall y \in X, \forall k \geq 0$
From (1) and (2) we get
$d\left(h^{n}(x),\left(f h^{n+2 k}\right)(x)\right) \leq c^{n} d\left(x, h^{2 k}(x)\right) \leq c^{n} d\left(x,\left(f h^{2 k}\right)(x)\right)$
$\leq c^{n} \sum_{i=0}^{2 k-2} c^{i} \max \left\{d(x,(f h)(x)), d\left(x,\left(f h^{2}\right)(x)\right)\right\}$
$\leq \frac{c^{n}}{1-c} \max \left\{d(x,(f h)(x)), d\left(x,\left(f h^{2}\right)(x)\right)\right\}, \forall n \in \mathbb{N}, \forall k \geq 2$
and $d\left(h^{n}(x),\left(f h^{n+2 k+1}\right)(x)\right) \leq c^{n} d\left(x,\left(f h^{2 k+1}\right)(x)\right)$
$\leq c^{n} \sum_{i=0}^{2 k} c^{i} \max \left\{d(x,(f h)(x)), d\left(x,\left(f h^{2}\right)(x)\right)\right\}$
$\leq \frac{c^{n}}{1-c} \max \left\{d(x,(f h)(x)), d\left(x,\left(f h^{2}\right)(x)\right)\right\}, \forall n \in \mathbb{N}, \forall k \geq 0$
From (3) and (4), we get
$d\left(h^{n}(x),\left(f h^{n+m}\right)(x)\right) \leq \frac{c^{n}}{1-c} \max \left\{d(x,(f h)(x)), d\left(x,\left(f h^{2}\right)(x)\right)\right\}, \forall n, m \in \mathbb{N}$
This shows that $\lim _{n \rightarrow \infty} d\left(h^{n}(x),\left(f h^{n+m}\right)(x)\right)=0$ so that $\left\{h^{n}(x)\right\}$ is an I-cauchy sequence in $X$.
But $X$ is I-complete. Therefore there exists a point $a \in X$ such that $\left\{h^{n}(x)\right\}$ I-converges to $a$.
Now $d\left(\left(f h^{n+1}\right)(x), h(a)\right) \leq c d\left(\left(f h^{n}\right)(a), a\right) \rightarrow 0$ as $n \rightarrow \infty$ so that $d\left(\left(f h^{n+1}\right)(x), h(a)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Therefore $\left\{h^{n}(x)\right\}$ I-converges to $h(a)$ also.
Therefore $(f h)(a)=f(a)$ so that $a$ is an I-fixed point of $h$.

Now let $b \in X$ be such that $(f h)(b)=f(b)$. Then
$d(a, b) \leq d(f(a), f(b))=d((f h)(a),(f h)(b))=d(h(a),(f h)(b)) \leq c d(a, b)$
$\Rightarrow d(a, b)=0($ since $0<c<1) \Rightarrow f(a)=f(b)$

Definition (3.2) [T-orbitally I-completeness] Let ( $X, d, f$ ) be an I-g.m.s. and $T: X \rightarrow X .(X, d, f)$ is said to be $T$-orbitally I-complete iff every I-cauchy sequence which is contained in $\left\{x, T(x), T^{2}(x), \ldots \ldots\right\}$ for some $x \in X$, I-convergence in $X$.

Definition (3.3) [ $\varepsilon$-chainable] An I-g.m.s. $(X, d, f)$ is said to be $\varepsilon$-chainable if for any two points $a, b \in X$, there exists a finite set of points $a=x_{o}, x_{1}, \ldots \ldots, x_{n}=b$ such that $d\left(f\left(x_{i-1}\right), x_{i}\right) \leq \varepsilon$ for $i=1,2, \ldots \ldots, n$, where $\varepsilon>0$.

Definition (3.4) A mapping : $X \rightarrow X$, where $(X, d, f)$ is an I-g.m.s., is called (i) Locally contractive if for every $x \in X, \exists \varepsilon_{x}>0$ and $\lambda_{x} \in[0,1)$ such that $\forall p, q \in\left\{y \in X \mid d(x, y) \leq \varepsilon_{x}\right\}$, the relation $d(T(p), T(q)) \leq \lambda_{x} d(p, q)$ holds.
(ii) Locally I-contractive if for every $x \in X, \exists \varepsilon_{x}>0$ and $\lambda_{x} \in[0,1)$ such that $\forall p, q \in\left\{y \in X \mid d(x, y) \leq \varepsilon_{x}\right\}$, the relation $d((f T)(p), T(q)) \leq \lambda_{x} d(p, q)$ holds.

Definition (3.5) Let ( $X, d, f$ ) be an I-g.m.s.. Then $T: X \rightarrow X$ is called $(\varepsilon, \lambda)$ uniformly locally I-contractive if it is locally I-contractive at all points $x \in X$ and $\varepsilon, \lambda$ do not depend on $x$, i.e., $d(f(x), y)<\varepsilon \Rightarrow d((f T)(x), T(y))<\lambda d(x, y), \forall x, y \in X$, where $\varepsilon>0, \lambda \in[0,1)$.

Note (3.6) From definition (3.5) it is clear that a uniformly locally I-contractive map is I-continuous.

Theorem (3.7) If $T: X \rightarrow X$ is an $(\varepsilon, \lambda)$ uniformly locally I-contractive mapping defined on a $T$-orbitally I-complete, $\frac{\varepsilon}{2}$ - chainable I-g.m.s. $(X, d, f)$ such that $T f=f T$ and satisfying the following condition (A) for all $x, y, z \in X, d(f(x), y)<\frac{\varepsilon}{2}$ and $d(f(y), z)<\frac{\varepsilon}{2} \Rightarrow d(f(x), z)<\varepsilon$, then $T$ has an I-unique I-fixed point in $X$.

Proof: Let $\in X$. Since $(X, d, f)$ is $\frac{\varepsilon}{2}$ - chainable and, $T(x) \in X$, there exists finite number of points $x=x_{o}, x_{1}, \ldots \ldots, x_{n}=T(x)$ such that $d\left(f\left(x_{i-1}\right), x_{i}\right)<\frac{\varepsilon}{2}$, for $i=1,2, \ldots, n$
Without loss of generality let $x_{1}, x_{2}, \ldots \ldots, x_{n-1}$ are I-distinct; and if $n>2$, then assume that $x_{o}, x_{1}, x_{2}, \ldots \ldots, x_{n}$ are I-distinct.

ISSN: 0374-8588
Volume 21 Issue 16, December2019

For $n=1$, from (1) we have $d(f(x), T(x))<\frac{\varepsilon}{2}$
For $n=2$, from (1) and (A) we have $d(f(x), T(x))<\frac{2 \varepsilon}{2}$
Let $n>2$ and $n=2 m+1(m \geq 1)$ be odd.
Now $d(f(x), T(x)) \leq d\left(f(x), x_{1}\right)+d\left(f\left(x_{1}\right), x_{2}\right)+\cdots \ldots+d\left(x_{2 m},(f T)(x)\right)$
$=d\left(f(x), x_{1}\right)+d\left(f\left(x_{1}\right), x_{2}\right)+\cdots \ldots+d\left(f\left(x_{2 m}\right), T(x)\right)<(2 m+1) \frac{\varepsilon}{2}=\frac{n \varepsilon}{2}$.
Let $n>2$ and $n=2 m(m \geq 2)$ be even. Then
$d(f(x), T(x)) \leq d\left(f(x), x_{2}\right)+d\left(f\left(x_{2}\right), x_{3}\right)+\cdots \ldots+d\left(x_{2 m-1},(f T)(x)\right)$
$=d\left(f(x), x_{2}\right)+d\left(f\left(x_{2}\right), x_{3}\right)+\cdots \ldots+d\left(f\left(x_{2 m-1}\right), T(x)\right)<\varepsilon+(2 m-2) \frac{\varepsilon}{2}=\frac{n \varepsilon}{2}$ (by (1) and (A))
Therefore $d(f(x), T(x)) \leq \frac{n \varepsilon}{2}$
Since $T$ is $(\varepsilon, \lambda)$ uniformly locally I-contractive, following (1) we have
$d\left((f T)\left(x_{i-1}\right), T\left(x_{i}\right)\right)<\lambda d\left(x_{i-1}, x_{i}\right) \leq \lambda d\left(f\left(x_{i-1}\right), x_{i}\right)<\frac{\lambda \varepsilon}{2}$, for $i=1,2, \ldots \ldots, n$
Therefore by induction, $\left(\left(f T^{m}\right)\left(x_{i-1}\right), T^{m}\left(x_{i}\right)\right)<\frac{\lambda^{m} \varepsilon}{2}, \forall m \in \mathbb{N}$, for $i=1,2, \ldots \ldots, n$
and $d\left(\left(f T^{m}\right)\left(x_{o}\right), T^{m}\left(x_{2}\right)\right)<\lambda^{m} \varepsilon, \forall m \in \mathbb{N} \quad($ by $(\mathrm{A}))$.
Therefore following the procedure of proving of (2), we have
$d\left(\left(f T^{m}\right)(x), T^{m+1}(x)\right)<\frac{\lambda^{m} n \varepsilon}{2}, \forall m \in \mathbb{N}$
Now let $\left(f T^{m}\right)(x)=\left(f T^{n}\right)(x)$, for some $m, n \in \mathbb{N}$ with $m>n$.
Let $p=m-n, u=T^{n}(x)$.
Then $\left(f T^{p}\right)(u)=f(u)$ so that $\left(f T^{k p}\right)(u)=f(u), \forall k \in \mathbb{N} ;$ since $f T=T f$
Now, $T(u) \in X$. Therefore, similarly we shall get
$d\left(\left(f T^{m}\right)(u), T^{m+1}(u)\right)<\frac{\lambda^{m} n \varepsilon}{2}, \forall m \in \mathbb{N}$, for some $\in \mathbb{N}$.
(4) ( similar to (3)).

Then $d(f(u), T(u))=d(f(u),(f T)(u))=d\left(\left(f T^{k p}\right)(u), T^{k p+1}(u)\right)$ (since $f T=T f$ )

$$
<\frac{\lambda^{k p} n \varepsilon}{2} \rightarrow 0 \text { as } k \rightarrow \infty(\text { since } \lambda \in[0,1)) .
$$

therefore $(f T)(u)=f(u)$.
therefore let $\left(f T^{m}\right)(x) \neq\left(f T^{n}\right)(x), \forall m, n \in \mathbb{N}$.
Now we shall show that $\left\{T^{n}(x)\right\}$ is an I-cauchy sequence in $X$. Since $\lambda \in[0,1), \exists k(>2) \in \mathbb{N}$ such that $\lambda^{k}<\frac{1}{n}$.
By (3), $d\left(\left(f T^{k}\right)(x), T^{k+1}(x)\right)<\frac{\lambda^{k} n \varepsilon}{2}<\frac{\varepsilon}{2}$ and $d\left(\left(f T^{k+1}\right)(x), T^{k+2}(x)\right)<\frac{\lambda^{k+1} n \varepsilon}{2}<\frac{\varepsilon}{2}$
Therefore by (A), $d\left(\left(f T^{k}\right)(x), T^{k+2}(x)\right)<\varepsilon$
Let $\mathrm{m}(>k) \in \mathbb{N}$ be arbitrary.
If $n=2 q+1(q \geq 0)$ be odd, then
$d\left(\left(f T^{m}\right)(x), T^{m+n}(x)\right) \leq d\left(\left(f T^{m}\right)(x), T^{m+1}(x)\right)+d\left(\left(f T^{m+1}\right)(x), T^{m+2}(x)\right)$

$$
\begin{array}{r}
+\cdots \ldots+d\left(\left(f T^{m+2 q}\right)(x), T^{m+2 q+1}(x)\right) \\
<\left(\lambda^{m}+\lambda^{m+1}+\cdots \ldots+\lambda^{m+2 q}\right) \frac{n \varepsilon}{2}(\text { by }(3))<\frac{\lambda^{m}}{1-\lambda} \frac{n \varepsilon}{2}
\end{array}
$$

If $n=2 q(q \geq 1)$ be even, then
$d\left(\left(f T^{m}\right)(x), T^{m+n}(x)\right) \leq d\left(\left(f T^{m}\right)(x), T^{m+2}(x)\right)+d\left(\left(f T^{m+2}\right)(x), T^{m+3}(x)\right)$

$$
+\cdots \ldots+d\left(\left(f T^{m+2 q-1}\right)(x), T^{m+2 q}(x)\right)
$$

$$
<\lambda^{m-k} \varepsilon+\left(\lambda^{m+2}+\lambda^{m+3}+\cdots \ldots+\lambda^{m+2 q-1}\right) \frac{n \varepsilon}{2}(\text { by }(\mathrm{A}))<\lambda^{m-k} \varepsilon+\frac{\lambda^{m+2}}{1-\lambda} \frac{n \varepsilon}{2} \text { (by (3) and (4)) }
$$

$$
=\frac{\lambda^{m-k} \varepsilon}{2(1-\lambda)}\left(2-2 \lambda+n \lambda^{k-2}\right)
$$

Therefore for positive integer $n$, we have
$d\left(\left(f T^{m}\right)(x), T^{m+n}(x)\right)<\frac{\lambda^{m-k} \varepsilon}{2(1-\lambda)} r$, where $r=\max \left\{n \lambda^{k}, 2-2 \lambda+n \lambda^{k-2}\right\}$
Since $k$ is fixed and $\in[0,1)$, hence $\lambda^{m-k} \rightarrow 0$, as $m \rightarrow \infty$, so that
$d\left(\left(f T^{m}\right)(x), T^{m+n}(x)\right) \rightarrow 0$ as $\rightarrow \infty$. Therefore $\left\{T^{n}(x)\right\}$ is I-cauchy.
Since $X$ is $T$-orbitally I-complete, hence $\left\{T^{n}(x)\right\}$ I-converges to some point $u$ in $X$.
Since $T$ is uniformly locally I-contractive map, hence $T$ is I-continuous.
Therefore $\left\{T\left(T^{n}(x)\right)\right\}$ I-converges t $u$. .
Again $\left\{T\left(T^{n}(x)\right)\right\}$, i.e., $\left\{T^{n+1}(x)\right\}$ I-converges to $u$.
Therefore $(f T)(u)=f(u)$
Therefore $u$ is an I-fixed point of $T$.
Let $v$ be another I-fixed point of $T$. then $(f T)(v)=f(v)$
Since $X$ is $\frac{\varepsilon}{2}$-chainable, there exists finite number of points $u=x_{0}, x_{1}, \ldots \ldots, x_{n}=v$ such that $d\left(f\left(x_{i-1}\right), x_{i}\right)<\frac{\varepsilon}{2}$, for $i=1,2, \ldots \ldots, n$.
Then similarly, as proved above, we have $\left(\left(f T^{m}\right)(u), T^{m}(v)\right)<\frac{\lambda^{m} n \varepsilon}{2}, \forall m \in \mathbb{N}$
Therefore $d(f(u), v)=d(f(u), f(v))=d\left(\left(f T^{m}\right)(u),\left(f T^{m}\right)(v)\right)$
((6), (7), and since $T=T f$ )

$$
=d\left(\left(f T^{m}\right)(u), T^{m}(v)\right)<\frac{\lambda^{m} n \varepsilon}{2}(\text { by }(8)) \rightarrow 0 \text { as } m \rightarrow \infty
$$

Therefore $d(f(u), v)=0$ so that $f(u)=f(v)$. Therefore $u$ is I-unique.

Definition (3.8) [Sequentially convergence] Let $(X, d, f)$ be an I-g.m.s. A map $T: X \rightarrow X$ is said to be sequentially I-convergent if for every sequence $\left\{y_{n}\right\}$, if $\left\{T\left(x_{n}\right)\right\}$ is I-convergent, then $\left\{y_{n}\right\}$ is also Iconvergent.
$T$ is said to be sub-sequentially I-convergent if for every sequence $\left\{y_{n}\right\}$, if $\left\{T\left(x_{n}\right)\right\}$ is I-convergent, then $\left\{y_{n}\right\}$ has an I-convergent subsequence.

Theorem (3.9)[Extended Kannan contraction principle] Let ( $X, d, f$ ) be an I-complete I-g.m.s. and $T, S: X \rightarrow X$ such that $T$ is I-continuous, sub-sequentially I-convergent and $f T$ is I-injective . If $\lambda \in[0,1 / 2)$ and $d((f T S)(x),(T S)(y)) \leq \lambda(d((f T)(x),(T S)(x))+$ $d((f T)(y),(T S)(y))), \forall x, y \in X$
Then $S$ has an I-fixed point. In addition, if $f S=S f$ then this I-fixed point of $S$ is I-unique. Also if $T$ is sequentially I-convergent then for every $x_{o} \in X$ the sequence $\left\{S^{n}\left(x_{o}\right)\right\}$ I-converges to this I-fixed point.

Proof: Let $x_{o} \in X$ be arbitrary. For all $n \in \mathbb{N}$ let $x_{n}=S^{n}\left(x_{o}\right)$. Using (1) we get
$d\left((f T)\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left((f T S)\left(x_{n-1}\right),(T S)\left(x_{n}\right)\right)$
$\leq \lambda\left(d\left((f T)\left(x_{n-1}\right),(T S)\left(x_{n-1}\right)\right)+d\left((f T)\left(x_{n}\right),(T S)\left(x_{n}\right)\right)\right)$
$\leq\left(\frac{\lambda}{1-\lambda}\right)^{2} d\left((f T)\left(x_{n-2}\right), T\left(x_{n-1}\right)\right)$ (by the same argument )
$\leq \cdots \ldots \ldots \leq\left(\frac{\lambda}{1-\lambda}\right)^{n} d\left((f T)\left(x_{o}\right), T\left(x_{1}\right)\right)$
Now for all $m, n \in \mathbb{N}$, we have
$d\left((f T)\left(x_{m}\right), T\left(x_{n}\right)\right)=d\left((f T S)\left(x_{m-1}\right),(T S)\left(x_{n-1}\right)\right)$
$\leq \lambda\left(d\left((f T)\left(x_{m-1}\right),(T S)\left(x_{m-1}\right)\right)+d\left((f T)\left(x_{n-1}\right),(T S)\left(x_{n-1}\right)\right)\right)($ by (1) )
$=\lambda\left(d\left((f T)\left(x_{m-1}\right), T\left(x_{m}\right)\right)+d\left((f T)\left(x_{n-1}\right), T\left(x_{n}\right)\right)\right)$
$\leq \lambda\left(\left(\frac{\lambda}{1-\lambda}\right)^{m-1}+\left(\frac{\lambda}{1-\lambda}\right)^{n-1}\right) d\left((f T)\left(x_{o}\right), T\left(x_{1}\right)\right)($ by (4) $) \rightarrow 0$ as $m, n \rightarrow \infty($ since $0 \leq \lambda<1 / 2)$
Therefore $\left\{T\left(x_{n}\right)\right\}$ is an I-cauchy sequence. Since $X$ is I-complete, hence $\left\{T\left(x_{n}\right)\right\}$ I-converges to some point $v \in X$. Since $T$ is sub-sequentially I-convergent, the sequence $\left\{x_{n}\right\}$ has an I-convergent subsequence $\left\{x_{n_{k}}\right\}$ I-converging to a point $\in X$. Since $T$ is I-continuous and $\left\{x_{n_{k}}\right\}$ I-converges to $u$, hence $\left\{T\left(x_{n_{k}}\right)\right\}$ I-converges to $T(u)$.
Again $\left\{T\left(x_{n}\right)\right\}$ I-converges to $v \Rightarrow\left\{T\left(x_{n_{k}}\right)\right\}$ I-converges to $v$. Therefore $T(u)$ and $v$ are I-unique, so that $(f T)(u)=f(v)$.
Now $d((f T S)(u), T(u)) \leq d\left((f T S)(u),\left(T^{n_{k}}\right)\left(x_{o}\right)\right)+d\left(\left(f T S^{n_{k}}\right)\left(x_{o}\right),\left(T S^{n_{k}+1}\right)\left(x_{o}\right)\right)$ $+d\left(\left(T S^{n_{k}+1}\right)\left(x_{o}\right),(f T)(u)\right)$.
$\leq \lambda\left(d((f T)(u),(T S)(u))+d\left((f T)\left(S^{n_{k}-1}\left(x_{o}\right)\right),\left(T S^{n_{k}}\right)\left(x_{o}\right)\right)\right)+\left(\frac{\lambda}{1-\lambda}\right)^{m} d\left((f T)\left(x_{o}\right), T\left(x_{1}\right)\right)$

$$
+d\left((f T)\left(x_{n_{k}+1}\right), T(u)\right) \quad(\text { by (1) and (4) }) .
$$

$=\lambda d((f T S)(u), T(u))+\lambda d\left((f T)\left(x_{n_{k}-1}\right), T\left(x_{n_{k}}\right)\right)+\left(\frac{\lambda}{1-\lambda}\right)^{m} d\left((f T)\left(x_{o}\right), T\left(x_{1}\right)\right)$

$$
\begin{equation*}
+d\left((f T)\left(x_{n_{k}+1}\right), T(u)\right) \tag{5}
\end{equation*}
$$

Therefore $d((f T S)(u), T(u)) \leq \frac{\lambda}{1-\lambda} d\left((f T)\left(x_{n_{k}-1}\right), T\left(x_{n_{k}}\right)\right)+\frac{\lambda}{1-\lambda}\left(\frac{\lambda}{1-\lambda}\right)^{m} d\left((f T)\left(x_{o}\right), T\left(x_{1}\right)\right)$

$$
\begin{equation*}
+\frac{\lambda}{1-\lambda} d\left((f T)\left(x_{n_{k}+1}\right), T(u)\right) \rightarrow 0 \text { as } k \rightarrow \infty \tag{6}
\end{equation*}
$$

(since $\left\{T\left(x_{n}\right)\right\}$ is I-cauchy, $0 \leq \lambda<1 / 2$ and $\left\{T\left(x_{n_{k}}\right)\right\}$ I-converges to $T(u)$ )
therefore $d((f T S)(u), T(u))=0$
therefore $(f T S)(u)=(f T)(u)$
$\Rightarrow(f S)(u)=f(u)$ (since $f T$ is I-injective)
Therefore $u$ is an I-fixed point of $S$.
Let $S f=f S$. Let $w$ be any I-fixed point of $S$ in $X$. then $(f S)(w)=f(w)$
from (10) we get $(f T f S)(w)=(f T f)(w)=(f T S f)(w)($ since $S f=f S)$
Now $d((f T S)(u),(T S)(f(w))) \leq \lambda(d((f T)(u),(T S)(u))+d((f T)(f(w)),(T S)(f(w))))($ by (1))
$=\lambda(d((f T S)(u), T(u))+d((f T)(f(w)),(T S)(f(w)))=0)($ by (8) and (11))
Therefore $d((f T S)(u),(T S f)(w))=0$
$\Rightarrow(f T S)(u)=(f T S f)(w) \Longrightarrow(f S)(u)=(f S f)(w)$ (Since $f T$ is I-injective)
$\Rightarrow(f S)(u)=(f S)(w) \quad($ since $f=f S)$
$\Rightarrow f(u)=f(w)$ (by (9) and (10)).
therefore $u$ is I-unique.
Now if $T$ is sequentially I-convergent, replacing $\left\{n_{k}\right\}$ by $\{n\}$, we can say that $\left\{x_{n}\right\}$ I-converges to $u$, i.e. , $\left\{x_{n}\right\}$ I-converges to the I-fixed point of $S$ in $X$.

Definition (3.10) Let $(X, d, f)$ be an I-g.m.s. and : $X \rightarrow X$. We say that $x(\in X)$ is an I-periodic point of $T$ if $\left(f T^{k}\right)(x)=f(x)$ for some $k \in \mathbb{N}$.

Theorem (3.11) let $(X, d, f)$ be an I-Housdorff and I-complete I-g.m.s. Let $T: X \rightarrow X$ such that $f T=$ $T f$ and for all,$y \in X$,
$d((f T)(x), T(y)) \leq \frac{1}{2}(d(f(x), T(x))+d(f(y), T(y)))-\varphi(d(f(x), T(x)), d(f(y), T(y)))$
where $\varphi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is continuous and $\varphi(a, b)=0$ iff $a=b=0$. Then there exists an I-unique I-fixed point of $T$ in $X$.

Proof: Let $x_{o} \in X$ be arbitrary. let $x_{n}=T\left(x_{n-1}\right)=T^{n}\left(x_{o}\right), \forall n \in \mathbb{N}$.
If for some $n \in \mathbb{N}, f\left(x_{n}\right)=f\left(x_{n-1}\right)$, the proof is finished.
Let $f\left(x_{n}\right)=f\left(x_{n-1}\right), \forall n \in \mathbb{N}$.
From (1) we get

$$
\begin{align*}
& d\left(f\left(x_{n+1}\right), x_{n}\right)=d\left((f T)\left(x_{n}\right), T\left(x_{n-1}\right)\right) \\
& \leq \frac{1}{2}\left(d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right)+d\left(f\left(x_{n-1}\right), T\left(x_{n-1}\right)\right)\right)-\varphi\left(d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right), d\left(f\left(x_{n-1}\right), T\left(x_{n-1}\right)\right)\right) \\
& \leq \frac{1}{2}\left(d\left(x_{n}, f\left(x_{n+1}\right)\right)+d\left(x_{n-1}, f\left(x_{n}\right)\right)\right)  \tag{2}\\
& \Rightarrow d\left(f\left(x_{n+1}\right), x_{n}\right) \leq d\left(f\left(x_{n}\right), x_{n-1}\right), \forall n \in \mathbb{N}
\end{align*}
$$

Therefore the sequence $\left\{d\left(f\left(x_{n+1}\right), x_{n}\right)\right\}$ is monotone decreasing and bounded below, and hence is convergent in $\mathbb{R}$. Therefore there exists $p \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), x_{n}\right)=p$.
Taking $n \rightarrow \infty$, from (2) we get
$p \leq \frac{1}{2}(p+p)-\varphi(p, p)$ (since $\varphi$ is continuous ).
This implies that $0 \leq \varphi(p, p) \leq 0 \Longrightarrow \varphi(p, p)=0$ so that $p=0$.
Therefore $\lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), x_{n}\right)=0$
Using (1), (3) and continuity and given property of $\varphi$, similarly, we shall get
$\lim _{n \rightarrow \infty} d\left(f\left(x_{n+2}\right), x_{n}\right)=0$
We shall now show that $T$ has an I-periodic point. If possible, let $T$ has no I-periodic point.
Then $f\left(x_{n}\right) \neq f\left(x_{m}\right), \forall m, n \in \mathbb{N}$ with $m \neq n$.
In this case, we claim that $\left\{x_{n}\right\}$ is I-cauchy. if possible let $\left\{x_{n}\right\}$ is not I-cauchy. Then there exists $\varepsilon>$ 0 such that for a positive integer $k$, there exists integer $n_{k}(>k)$ and the least positive integer $m_{k}$ with $m_{k}>n_{k}>k$ such that $d\left(f\left(x_{n_{k}}\right), x_{m_{k}}\right)>\varepsilon$
Then $d\left(f\left(x_{n_{k}}\right), x_{m_{k}-1}\right) \leq \varepsilon$
Now $\varepsilon<d\left(f\left(x_{n_{k}}\right), x_{m_{k}}\right) \leq d\left(f\left(x_{m_{k}}\right), x_{m_{k}-2}\right)+d\left(f\left(x_{m_{k}-2}\right), x_{m_{k}-1}\right)+d\left(f\left(x_{m_{k}-1}\right), x_{n_{k}}\right)$ $\leq d\left(f\left(x_{m_{k}}\right), x_{m_{k}-2}\right)+d\left(f\left(x_{m_{k}-2}\right), x_{m_{k}-1}\right)+\varepsilon$ (by (5) and (6))
Then using (3) and (4), we get $\lim _{k \rightarrow \infty} d\left(f\left(x_{n_{k}}\right), x_{m_{k}}\right)=\varepsilon$
now $d\left(f\left(x_{m_{k}}\right), x_{n_{k}}\right)=d\left((f T)\left(x_{m_{k}-1}\right), T\left(x_{n_{k}-1}\right)\right)$
$\leq \frac{1}{2}\left(d\left(f\left(x_{m_{k}-1}\right), x_{m_{k}}\right)+d\left(f\left(x_{n_{k}-1}\right), x_{n_{k}}\right)\right)-\varphi\left(d\left(f\left(x_{m_{k}-1}\right), x_{m_{k}}\right), d\left(f\left(x_{n_{k}-1}\right), x_{n_{k}}\right)\right)$
taking $k \rightarrow \infty$ we get
$\varepsilon \leq \frac{1}{2}(0+0)-\varphi(0,0)$ (by (3) and (7) and continuity of $\varphi$ )
Therefore $\varepsilon \leq 0$ (by property of $\varphi$ ), a contradiction.
Therefore $\left\{x_{n}\right\}$ is I-cauchy in $X$. Since $X$ is I-complete, $\left\{x_{n}\right\}$ I-converges to some point $u$ in $X$.
Now $d\left((f T)\left(x_{n}\right), T(u)\right) \leq \frac{1}{2}\left(d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right)+d(f(u), T(u))\right)-$
$\varphi\left(d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right), d(f(u), T(u))\right)$

$$
\begin{align*}
& \Rightarrow d\left(f\left(x_{n+1}\right), T(u)\right) \leq \frac{1}{2}\left(d\left(f\left(x_{n}\right), x_{n+1}\right)+d(f(u), T(u))\right) \\
& \quad-\varphi\left(d\left(f\left(x_{n}\right), x_{n+1}\right), d(f(u), T(u))\right)  \tag{8}\\
& \Rightarrow d\left(f\left(x_{n+1}\right), T(u)\right) \leq \frac{1}{2}\left(d\left(f\left(x_{n}\right), x_{n+1}\right)+d(f(u), T(u))\right) \\
& \Rightarrow \lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), T(u)\right) \leq \frac{1}{2} d(f(u), T(u))(\text { by }(3)) \tag{9}
\end{align*}
$$

Let $f\left(x_{n}\right) \neq f(u)$ and $\left(x_{n}\right) \neq(f T)(u), \forall n \geq 2$.
Then $d(f(u), T(u)) \leq d\left(f(u), x_{n}\right)+d\left(f\left(x_{n}\right), x_{n+1}\right)+d\left(f\left(x_{n+1}\right), T(u)\right)$
$\Rightarrow d(f(u), T(u)) \leq \lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), T(u)\right)$
(by (3) and since $\left\{x_{n}\right\}$ I-converges to $u$ )
From (9) and (10) we get
$d(f(u), T(u)) \leq \lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), T(u)\right) \leq \frac{1}{2} d(f(u), T(u))$
$\Rightarrow d(f(u), T(u))=0 \Rightarrow(f T)(u)=f(u)$
Therefore $u$ is an I-fixed point of $T$ so that $u$ is an I-periodic point of $T$ which contradicts the fact that $T$ has no I-periodic point.
Let for some positive integer $r \geq 2, f\left(x_{r}\right)=f(u)$ or $f\left(x_{r}\right)=(f T)(u)$
Since $T$ has no I-periodic point, hence $f(u) \neq f\left(x_{o}\right)$
Now $d\left(\left(f T^{n}\right)(u), u\right)=d\left(\left(f T^{n}\right)\left(x_{r}\right), u\right)=d\left(f\left(x_{n+r}\right), u\right)$
Or, $d\left(\left(f T^{n}\right)(u), u\right)=d\left(\left(f T^{n-1}\right)\left(x_{r}\right), u\right)=d\left(f\left(x_{n+r-1}\right), u\right), \forall n \in \mathbb{N}$ (since $f T=T f$ ).
Since $r(\geq 2)$ is fixed, hence $\left\{x_{n+r}\right\}$ and $\left\{x_{n+r-1}\right\}$ are subsequences of $\left\{x_{n}\right\}$ and since $\left\{x_{n}\right\}$ Iconverges to $u$ in $X$ which is I-Housdorff, hence $\left\{x_{n+r}\right\}$ and $\left\{x_{n+r-1}\right\}$ both I-converges to $u$.
Therefore $\lim _{n \rightarrow \infty} d\left(f\left(x_{n+r}\right), u\right)=0=\lim _{n \rightarrow \infty} d\left(f\left(x_{n+r-1}\right), u\right)$.
Therefore $\lim _{n \rightarrow \infty} d\left(\left(f T^{n}\right)(u), u\right)=0($ since $f T=T f)$
Again since $X$ is I-Housdorff and $T$ has no I-periodic point, from (11) we have
$\lim _{n \rightarrow \infty} d\left(\left(f T^{n+2}\right)(u), u\right)=0$, (since $f T=T f$ ).
Since $T$ has no I-periodic point, hence $\left(f T^{s}\right)(u) \neq\left(f T^{t}\right)(u), \forall s, t \in \mathbb{N}$ with $s \neq t$
Using (13) and rectangular inequality, we have
$\left|d\left(\left(f T^{n+1}\right)(u), T(u)\right)-d(f(u), T(u))\right| \leq d\left(\left(f T^{n+1}\right)(u), T^{n+2}(u)\right)+d\left(\left(f T^{n+2}\right)(u), u\right)$
taking $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} d\left(\left(f T^{n+1}\right)(u), T(u)\right)=d(f(u), T(u))$
(Using (3) and replacing $x_{o}$ by $u$ )
Similarly we have $\lim _{n \rightarrow \infty} d\left(\left(f T^{n}\right)(u), T(u)\right)=d(f(u), T(u))$
Now $d\left(\left(f T^{n+1}\right)(u), T(u)\right)$
$\leq \frac{1}{2}\left(d\left(\left(f T^{n}\right)(u), T(u)\right)+d(f(u), T(u))\right)-\varphi\left(d\left(\left(f T^{n}\right)(u), T(u)\right), d(f(u), T(u))\right)($ by (1) )

Taking $n \rightarrow \infty$, we get
$d(f(u), T(u)) \leq \frac{1}{2}(d(f(u), T(u))+d(f(u), T(u)))-\varphi(d(f(u), T(u)), d(f(u), T(u)))$
(by (14), (15) and continuity of $\varphi$ )
$\Rightarrow 0 \leq \varphi(d(f(u), T(u)), d(f(u), T(u))) \leq 0 \Rightarrow \varphi(d(f(u), T(u)), d(f(u), T(u)))=0$
$\Rightarrow d(f(u), T(u))=0$ (by property of $\varphi$ )
$\Rightarrow(f T)(u)=f(u) \Rightarrow u$ is an I-fixed point of $T$.so that $u$ is an I-periodic point of $T$, a contradiction.
Therefore $T$ has an I-periodic point. Therefore there exists $u \in X$ such that $\left(f T^{k}\right)(u)=f(u)$, for some $k \in \mathbb{N}$
If $k=1$ in (16), then $(f T)(u)=f(u)$ and in this case $u$ is an I-fixed point of $T$.
Let $k>1$. Let $\left(f T^{k}\right)(u) \neq\left(f T^{k-1}\right)(u)$. Then $d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)>0$ so that
$\varphi\left(d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right), d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)>0$
Now $d(f(u), T(u))=d\left(\left(f T^{k}\right)(u),(f T)(u)\right)=d\left(\left(f T^{k}\right)(u),\left(f T^{k+1}\right)(u)\right)($ by (16) and $T=T f)$
$\left.=d\left((f T)\left(T^{k-1}(u)\right), T\left(T^{k}(u)\right)\right) \leq \frac{1}{2}\left(d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)+d\left(\left(f T^{k}\right)(u), T\left(T^{k}(u)\right)\right)\right)$

$$
\left.-\varphi\left(d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right), d\left(\left(f T^{k}\right)(u), T\left(T^{k}(u)\right)\right)\right)
$$

$\left.<\frac{1}{2}\left(d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)+d(f(u), T(u))\right) \quad($ by $(16)$ and $f T=T f)$
Therefore $\left.d(f(u), T(u))<d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)$
Again $\left.d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)=d\left((f T)\left(T^{k-2}(u)\right), T\left(T^{k-1}(u)\right)\right)$

$$
\begin{aligned}
& \leq \frac{1}{2}\left(d\left(\left(f T^{k-2}\right)(u), T^{k-1}(u)\right)+d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right) \\
& \quad-\varphi\left(d\left(\left(f T^{k-2}\right)(u), T^{k-1}(u)\right), d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)
\end{aligned}
$$

$\leq \frac{1}{2}\left(d\left(\left(f T^{k-2}\right)(u), T^{k-1}(u)\right)+d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right)\right)$
$\Rightarrow d\left(\left(f T^{k-1}\right)(u), T^{k}(u)\right) \leq d\left(\left(f T^{k-2}\right)(u), T^{k-1}(u)\right)$
From (17) and (18) we get $(f(u), T(u)) \leq d\left(\left(f T^{k-2}\right)(u), T^{k-1}(u)\right)$
Proceeding in this way, after finite number of steps, we get
$d(f(u), T(u))<d(f(u), T(u))$, a contradiction.
Therefore $\left(f T^{k}\right)(u)=\left(f T^{k-1}\right)(u)$
$\Rightarrow(f T)\left(T^{k-1}(u)\right)=f\left(T^{k-1}(u)\right) \Rightarrow T^{k-1}(u)$ is an I-fixed point of $T$.
Let there are two points $x, y \in X$ such that $(f T)(x)=f(x)$ and $(f T)(y)=f(y)$.

Now $d(f(x), y)=d(f(x), f(y))=d((f T)(x),(f T)(y))=d((f T)(x), T(y))$
$\leq \frac{1}{2}(d((f T)(x), T(x))+d((f T)(y), T(y)))-\varphi(d((f T)(x), T(x)), d((f T)(y), T(y)))$ (by (1))
$=0$
$\Rightarrow d(f(x), y)=0 \Rightarrow f(x)=f(y)$.
Therefore $T$ has an I-unique I-fixed point in $X$.

## Conclusion

Further study may be continued for generalization of various contractive conditions and fixed point result.

## References

[1] Arshad M., Ahmad J.; Karapinar E., Some Common Fixed Point Results in Rectangular Metric Spaces, Intern. J. Analysis, Article ID 307234. (2013).
[2] Aydi H., Karapinar E.; Lakzian H., Fixed Point Results on a class of generalized metric spaces, Math. Sci. (A Springer Open J. ), 2012, 6:46.
[3] Banach S. (1922); Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, fund.math3, pp. 133-181.
[4] Branciari A.; A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, (57) 1-2 (2000), PP 31-37.
[5] Das P. and Dey L. K.; A Fixed Point Theorem in a Generalized Metric Space, Soochow J. Math., Vol. 33, No. 1 (2007), PP 33-39.
[6] Kannan R.; Some results on fixed points, Bull. Calcutta Math Soc. 60 (1968), 71-76.
[7] Kikina L., Kikina K.; A fixed point theorem in generalized metric spaces, Demonstratio Mathematica, Vol. XLVI, No. 1, 2013 (10.1515/dema-2013-0432).
[8] Moradi S.; Kannan fixed-point theorem on complete metric spaces and on generalized metric spaces depended on another function, 2009, arXiv: 0903.1577v1.

