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Abstract
The aim of this paper is to establish the structure of I-generalized metric spaces as a concept of metric spaces, which is a
kind of generalization of traditional generalized metric space structure. Some fixed point results for various contractive type
mappings in the context of I-generalized metric spaces are presented. We also provide some definitions to illustrate the
results presented herein.
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1. Introduction

The concept of metric spaces has been generalized in many directions. The notion of a metric space
induces topological properties like open and closed sets which leads to the study of more abstract
topological spaces.

In 2000, Branciari [4] introduced generalized metric spaces replacing triangular inequality by
rectangular inequality and subsequently several fixed point results have been developed in this metric
space.

A generalization of contraction mapping is in Banach contraction [4], uniformly locally contraction
[5], Kannan contraction [8] mappings in generalized metric space.

Here we shall generalize these concepts and some more fixed point results [2] in I-generalized metric
space.

2. Preliminaries
First we recall some notation and definitions that will be utilized in our subsequent discussion.
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Definition (2.1) [I-uniqueness or I-equality] Let X be a non-empty setand f : X — X be an
idempotent map. Two elements x and y in X are said to be I-unique with respectto f if f(x) = f(y) ;
otherwise x and y are said to be I-distinct points in X.

Definition (2.2)[l-generalized metric space] Let X be a non-empty set, f: X — X be an idempotent
map, i.e., f2=f.Amapd: X? - [0, ) is said to be an I-generalized metric on X iff

l: Vx,y €X, d(x, f(»)) = 0 iff f(x) =f()andd(f(x),y) =0 iff f(x)=f).

12: d(x, f(y)) = d(y, f(x)) and (f(x),y) = d(f (), %), Vx,y €X.

Is: forall x,y € X and for all I-distinct points u, v € X each of them I-distinct from x and y, (x,y) <

d(f(x),w) +d(f(w),v) +d,f(¥)) .

The order triple (X, d, f) is called an I-metric space. Elements of X are said to be points in X .

Example (2.3): (i) Every I-metric space is clearly a I-g.m.s.
(i) Every generalized metric space (X, d) is clearly a I-g.m.s. with respect to the identity map on X.

Definition (2.4) [1-open sphere] Let ( X, d, f) be an I-metric space and x € X and r be a positive real
number. Then the set S;(x,7) = {y € X | d(x, f(y)) < r}is called the I-open sphere or I-open ball,
with centre x and radius r in X.

Definition (2.5) [Convergence of a sequence] A sequence {x,,} in an I-metric space ( X, d, f) is said

to I-converge to a point x of X, if forany e > 0,3m € Nsuchthatx, € S¢(x,¢),¥Vn =m. Inthis
case x is called I-limit of the sequence {x,,}.

A sequence which is not I-convergent in an I-metric space (X, d, f), is called a non-1-convergent or an
I-divergent sequence.

Definition (2.6) [Cauchy sequence] A sequence {x,} in an I-metric space ( X, d, f) is said to be an I-
cauchy sequence in X if forany € > 0,3n, € Nsuchthatd(f(xp),x,) < €,Ym,n =>n,,i.e.,
d(f(p4p)rxn) <€, Vn = n,,Vp = 1.

Definition (2.7) [Complete I-metric space] An I-metric space ( X, d, f) is said to be I-complete if
every I-cauchy sequence in X I-converges to some point of X ; otherwise ( X, d, ) is called I-
incomplete.

Definition (2.8) [I-fixed point] Let X be a non-empty setand f : X — X is an idempotent map. A
map h : X — X is said to have an I-fixed point x (€ X)) if (fh)(x) = f(x) .
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Definition (2.9) [I-continuity] Let (X, d4, f), (Y,d,, g) be two I-generalized metric spaces. Then a
function h: (X,dq, f) — (Y,d,, g) is said to be I-continuous at a point a € X , if corresponding to
every e > 0,38 > 0suchthat d; (f(x),a) < § = d,((gh)(x),h(a)) <.

h is said to be I-continuous on X, if it is I-continuous at every point of X.

Definition (2.10) [I-injective mapping] Let (X, d4, f), (Y,d,, g) be two I-generalized metric spaces.
A mapping h : X — Y issaid to be I-injective if for all x;,x, € X, h(x;) = h(x;) = f(x1) = f(xy)

Definition (2.11) [I-Housdorff space] An I-generalized metric space ( X, d, f) is said to be
I-Housdorff , if for any two I-distinct points x, y in X, there exists a positive real number r such that
Se(x, ) NSe(y, 1) = D.

Theorem (2.12) Let ( X, d, f) be an I-generalized metric space. Then

M dx,x)=0,vx €X, i.e, Vx,y €X,x =y = d(x,y) =0.

(i) d(x, f(») = dfF (), ) = d(f(x), f) = d(fW), f(x)) = d(xy),d(y,x), Vx,y €X.
(iii) d(x,f(x)) =0, Vx € X.

Proof: Trivial.

3. Main Results
Theorem (3.1) [Banach contraction principle] Let (X,d, f) be an I-g.m.s. c€ (0,1) and

h: X — X be amap such that for each x,y € X, d((fh)(x), h(¥)) < c d(x,y) with

y # f(x), x # f(y), then
(i) there exists a point a € X such that for each x € X, the sequence h™(x) I-converges to a .

(i) (fh)(a) = f(a) and foreach b € X, (fh)(b) = f(b) = f(a) = f(b), i.e.,, h hasan l-unique
I-fixed point.

Proof: (i) Let x € X and consider the sequence {h™(x)}. If x is a periodic point for h , then h*(x) = x
for some k € N and then d(x, (fh)(x)) = d(h"(x), (fh"”)(x)) < cd(h*1(x), h*(x))

< cd(h* (%), FR) () < ¢ d(h*72(x), K71 (%)) < c2d(R*2(x), (FR* D) (%))

<. < ckd(x,h(x)) < c"d(x, (fh)(x)) = d(x, (fh)(x)) =0 (since0<c<1).

= (fh)(x) = f(x) = x is an I-fixed point of h .

Let h"(x) # h™(x),Vm,n € Nwithm = n.
Now vy € X, d(y, (fh")(y)) < d(f ), h(»)) + d((FR) (), h*(»)) + d(R* (), (Fh) ()
=d(y, W) + d(r(), (FRH ) + d(R* ), (FRH) (1))
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<d(y, fMG)) +cd(y, FRO) + c* d, (FR*) ()

=1+ d(y, FR) + 2 d(y, FRH)) = T3 ctd(y, FR)) + ¢**2d(y, (FhA)(¥)), for
k=2

Let forany > 2, d(y. (fhz")(y)) <Y cld(y, FRHO)) + 2 2d(y, (FR*) (), Yy € X .
Now ¥y € X, d(y, (Fh¥*2)(»)) < d(F(»),h(3)) + d((fD3), B2 () + d(h* (), (FhZ+2) (7))

=d(y, fHO) + d(hG), (FRHG)) + dR* ), (FR**2) (1))
<d(y, fHM) +c d(y, k() + c*d(y, h**(»))

2k-3
<d(y, FR®) +cd(y, FRB)) + ¢ (Z c'd(y, FR() + c*2d(y, (fhz)(y)))

i=0
2k—1

_ Z cld(y, (FR) + cZd(y, (Fh*) (1))
i=0

Therefore by mathematical induction, we have
vy € X,d(y, h**(y)) < 2T ctd(y, FRY)) + ¢ 2d(y, FRD(Y)), Vk=2 (1)
Similarly, by mathematical induction, we shall get
d(y, (FRP*) () < THo cld(y, (F (), Yy € X, Vk = 0 @)
From (1) and (2) we get
d(h" ), (FR™2)(x)) < c"d(x, h?(x)) < cd(x, (Fh2) (x))

2k-2

< ) hmax{d(x, (FDC), d@x, (Fh) )}

i=0
< max{d(x (F)(), dCx, (FR?)(x)),Vn € N, Vi > 2 -
and d(hn(X), (fh””"“)(x)) < c™d(x, (FR?**1) (x))

2k

<" Z ¢! max{d(x, (fR)(x)), d(x, (fh?)(x))}

i=0
< f—_nc max{d(x, (fR)(x)), d(x,(fh?)(x))},vn € N,Vk =0 (4)
From (3) and (4), we get
d(h™(x), (FA™™)(x)) < f—_rlc max{d(x, (fR)(x)), d(x,(fh*)(x))},ynnmeN  (5)
This shows that lim d(h™(x), (FR™™)(x)) = 0 so that {h™(x)} is an I-cauchy sequence in X .
But X is I-complete. Therefore there exists a point a € X such that {h™(x)} I-convergesto a .
Now d((fR™1)(x), h(a)) < cd((fh™)(a),a) - 0 as n — oo so that d((Fh™*1)(x), h(a)) - 0

asn — oo,
3663



';;;'3:3,;‘ Journal of The Gujarat Research Society

ISSN: 0374-8588
Volume 21 Issue 16, December2019

Therefore {h™(x)} I-converges to h(a) also.
Therefore (fh)(a) = f(a) so that a is an I-fixed point of h.

Now let b € X be such that (fh)(b) = f(b). Then

d(a,b) < d(f(a), f(b)) = d((fh)(a), (fR)(B)) = d(h(a), (fR)(P)) < c d(a,b)
= d(a,b) =0 (since0 <c<1)= f(a) = f(b)

Definition (3.2) [T-orbitally I-completeness] Let (X, d,f)beanl-gm.s.andT : X = X. (X, d,f)Iis
said to be T-orbitally I-complete iff every I-cauchy sequence which is contained in
{x,T(x), T?(x), ... ... } for some x € X, I-convergence in X .

Definition (3.3) [e-chainable] An I-g.m.s. ( X, d, ) is said to be e-chainable if for any two points
a,b € X, there exists a finite set of pointsa = x,,x;, ... ..., X, = b such that d(f (x;—1), x;) < € for
i=12,.... ,n, Where € > 0.

Definition (3.4) A mapping : X = X , where (X, d, f) isan I-g.m.s., is called

(i) Locally contractive if for every x € X,3 ¢, > 0 and A, € [0, 1) such that
Vp,q € {y € X |d(x,y) < &,}, the relation d(T(p),T(q)) < A,d(p, q) holds.
(ii) Locally I-contractive if for every x € X,3 ¢, > 0 and A, € [0, 1) such that
Vp,q €{y € X |d(x,y) < &}, therelation d((fT)(p),T(q)) < A, d(p, q) holds.

Definition (3.5) Let ( X, d, f) bean I-g.m.s.. Then T : X — X is called (e, A) uniformly locally
I-contractive if it is locally I-contractive at all points x € X and &, A do not depend on x, i.e.,

d(f(x),y) <e = d((fT)(x),T(y)) < 1d(x,y),Vx,y € X,where e >0, 1€ [0,1).
Note (3.6) From definition (3.5) it is clear that a uniformly locally I-contractive map is I-continuous.

Theorem (3.7) If T : X —» X isan (&, A) uniformly locally I-contractive mapping defined on a
T-orbitally 1-complete, § chainable I-g.m.s. (X, d, f) such that Tf = fT and satisfying the following

condition (A) forall x,y,z € X,d(f(x),y) < %and d(f(y),z) < % = d(f(x),z) < e,thenT has
an I-unique I-fixed point in X.

Proof: Let € X . Since (X, d, f) is %, chainable and, T (x) € X , there exists finite number of points

X =Xg,Xq1 e wnn, Xp = T(x)suchthat d(f(x;_1),x;) < 2 Jfori=1,2,....,n Q)
Without loss of generality let x; , x;, ... ... , Xn_q are I-distinct; and if n > 2, then assume that
Xo X1 ,Xg 5 eee, Xy are I-distinct.
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&

Forn = 1, from (1) we have d(f(x), T(x)) < -

For n =2, from (1) and (A) we have d(f(x), T(x)) <
Letn>2andn=2m+1(m = 1) be odd.

Now d(f (x), T(x)) < d(f(x),x1) + d(f (x1),%2) + =+ . + d (o, (FT) (1))
= d(f(x),x1) + d(f(x1),x2) + -+ oo + A(f (2), T (X)) < (2m + 1)% = %
Letn > 2andn =2m (m = 2) be even. Then

d(f (), T(x)) < d(f (), x2) + d(f (2), X3) + -+ oo+ d (g1, (FT) (X))
= d(f(x),x2) + d(f(x2), %3) + e+ A(f Com-1), T(x)) < e+ (2m = 2)- = = (by (1) and (A))

2&
2

Therefore d(f (x), T(x)) < = 2)
Since T is (e, A) uniformly locally I-contractive, following (1) we have

d((fT)(iey), T()) < Ad(ximy %) < Ad(f(xio1) ,26) < 2, for i =1.2,....,m
Therefore by induction, ((fT™) (xi—1), T™(x)) <=5 ,vm €N, for i = 1,2, ......,n

and d((fT™)(x,), T™(x;)) < A™e, vm € N (by (A)).
Therefore following the procedure of proving of (2), we have

d((FT™ ), T™1 (%) <5, vm € N ?)
Now let (fT™)(x) = (fT™)(x),forsome m,n € N withm > n..

Let p=m—-n, u=T"(x).

Then (fTP)(w) = f(u) sothat (fT*?)(u) = f(u), Yk €N ;since fT = Tf

Now, T'(u) € X . Therefore, similarly we shall get

d((FT™ @), T™' (w)) < 2, vm € N, for some € N . (4) (similar to (3)).

Then d(f (), T@w) = d(f@W), FTIW) = d((FT*)(w), T+ (w) (since fT = Tf)

k
A7t L 0ask - oo (since A € [0,1)).

therefore (fT)(w) = f(u).
therefore let (fT™)(x) # (fT™)(x),Vm,n € N.
Now we shall show that {T™(x)} is an I-cauchy sequence in X . Since A € [0,1),3 k (> 2) € N such

that Ak < 2.
n

By (3), d((FT¥) (), T*1(x)) < 222 < £ and d((FT) (), TH2(n) ) < 2026 < £
Therefore by (A), d((fT")(x),T"”(x)) <e (5)

Let m (> k) € N be arbitrary.
Ifn=2q+1 (¢ =0) beodd, then

d((FT™) (), T™"™(x) < d((FT™) (), T™ (%)) + d((FT™) (), T™2(x))
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4+ d((me+2q)(x), Tm+2q+1(x))
< QM A e+ M) by (3)) < A 2
Ifn=2q (¢ = 1) beeven, then
d((fT™ ), T™™(x)) < d((FT™)(x), T™2(x)) + d((FT™2)(x), T™3 (x))
+ o+ d((FT™H2971) (), T™24 (x))
< AM ke 4 (AMFZ 4 S 44 Am+2q—1)§ (by (A)) < A ke + % % (by (3) and (4))

Am—kg
T 2(1-2)

(2 — 21 +nak=2)
Therefore for positive integer n, we have
Am—kg

d((FT™ 0, T™ ") < S
Since k is fixed and € [0,1) , hence ™% - 0 ,asm — oo, so that

d((fT™)(x), T™"(x)) - 0 as - oo . Therefore {T™(x)} is I-cauchy.

Since X is T-orbitally I-complete, hence {T™(x)} I-converges to some point u in X.
Since T is uniformly locally I-contractive map, hence T is I-continuous.

Therefore {T(T™(x))} I-convergest w..

Again {T(T™(x))}, i.e.,{T™"1(x)} I-converges to u.

r,where r = max{nA¥,2 — 21+ n A¥7?}

Therefore (fT)(uw) = f(w) (6)

Therefore u is an I-fixed point of T .

Let v be another I-fixed point of T. then (fT)(v) = f(v) @)

Since X is Z—chainable, there exists finite number of points u = x, , x4, ... ... , Xn, = v such that
d(f (e, x) < - for i=12,..,m.

AMne
2

Then similarly, as proved above, we have ((fT™)(w), T™(v)) <

Therefore d(f(u),v) = d(f(w),f(v)) = d((FT™ W), fFT™ ()
((6), (7),and since T =Tf)
AMne

= d((me)(u),Tm(v)) < > (by (8)) > 0asm — o
Therefore d(f(u),v) = 0sothat f(u) = f(v) . Therefore u is I-unique.

,Ym €N (8)

Definition (3.8) [Sequentially convergence] Let (X,d, f) beanl-gm.s. Amap T : X — X is said to
be sequentially I-convergent if for every sequence {y,} , if {T(x;,)} is I-convergent, then {y,,} is also I-
convergent.

T is said to be sub-sequentially 1-convergent if for every sequence {y,,} , if {T (x;,)} is I-convergent,
then {y,} has an I-convergent subsequence.
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Theorem (3.9)[Extended Kannan contraction principle] Let (X,d, f) be an I-complete I-g.m.s. and
T,S:X — Xsuchthat T is I-continuous, sub-sequentially I-convergent and fT is I-injective .

If 2€[0, 1/2)and d((fTS)(x), (TS)»)) < A(d((fT)(x), (TS (X)) +

d((fM), (TH(Y)) ), Vx,y € X 1)

Then S has an I-fixed point. In addition, if fS = Sf then this I-fixed point of S is I-unique. Also if T is
sequentially I-convergent then for every x, € X the sequence {S™(x,)} I-converges to this I-fixed
point.

Proof: Let x, € X be arbitrary. For all n € N let x,, = S™(x,) . Using (1) we get
d((fT)(xn), T (tns1)) = d((FTS) Ctn1), (TS) (xn))

< HA((FT) 1), (TS) () + d((FT) (), (TS (x)) ) @
= d((fT) (), T@ns1)) < 2= d((FT) @), T () 3)
< (ﬁ)z d((fT)(xn-2), T(xn_1)) (by the same argument )

< < (&) (DG TG) @)

Now for all m,n € N, we have

d((fT) Cem), T(xn)) = d((fTS) (X1, (TS) (Xn-1))

< A7) G-, (T) (in-1)) + A((FT) (s, (TS) (1)) (by (1))
= 2(d((FT) Gom-1), TGom)) + A((FT) Gtn-1), T ()

< A((llj)m_l + (1%)”_1>d((fr)(x0),T(xl)) (by () > 0asmn — oo (sinced <A< 1/y)

Therefore {T'(x,,)} is an I-cauchy sequence. Since X is I-complete, hence {T (x,,)} I-converges to some

point v € X. Since T is sub-sequentially I-convergent, the sequence {x,} has an I-convergent sub-

sequence {x,, } I-converging to a point € X . Since T is I-continuous and {x,, } I-converges to u,

hence {T'(x,,)} I-converges to T (u).

Again {T(x,,)} I-convergestov = {T(xnk)} I-converges to v. Therefore T'(u) and v are I-unique, so

that (fT)(w) = f(v).

Now d((fTS)(w),T(w)) < d((fTS)(w), (TS™)(x,)) + d((fTS™)(x,), (TS™+1)(x,))
+d((TS™ ) (x,), (FTHIW)) -

A m
< 2(d((F@, T9)@) + d ((FIE™ (), T5™)(x) ) + (75) AU, TGx))
+d((fT) (%ne+1), T(W)) (by (1) and (4) ).

). m
= 24(( TS, TW) +2d (T (k1) T () + (775) AT, T@))
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+d((fT) (Xnyr1), T(W)) ®)

Therefore d((fT)(), 7)) < 7= d (1) Engo1). T0me) ) + 25 () AT TCx))
+ = d((fT) (1), T(w)) > 0 @S k — 00

(since {T'(x,,)} is l-cauchy, 0 < 1 < 1/2 and {T (x,,)} 1-converges to T'(u) ) (6)
therefore d((fTS)(w), T(w)) = 0 (7
therefore (fTS)(u) = (fT)(u) (8)
= (fS)(u) = f(u) (since fT is I-injective) 9)
Therefore u is an I-fixed point of S.
Let Sf = fS. Let w be any I-fixed point of S in X. then (fS)(w) = f(w) (10)
from (10) we get (fTfS)(w) = (fTf)(w) = (fTSf)(w) (since Sf = fS) (11)

Now d((fTS)(w), (TS)(fw))) < A (d((FTIw), (TS))) + d((FTIf W), (TSH(FW)))) (by (1))
= 2(d((TS)@), T@) + d((FTI(F W), (TS)(fw))) = 0) (by (8) and (11))

Therefore d((fTS)(w), (TSf)(w)) =0

= (fTS)(w) = (fTSHW) = (fS)(w) = (fSf)(w) (Since fT is I-injective)

= (fHW) = (fSHw) (since f = £S5)

= f(u) = f(w) (by (9)and (10)).

therefore u is I-unique.

Now if T is sequentially I-convergent, replacing {n;} by {n}, we can say that { x,,} I-converges to u,
i.e., {x,} I-converges to the I-fixed point of Siin X..

Definition (3.10) Let (X,d, f) bean I-gm.s.and : X — X . We say that x (€ X) is an I-periodic point
of Tif (fT*)(x) = f(x) forsome k € N.

Theorem (3.11) let (X, d, f) be an I-Housdorff and I-complete I-g.m.s. Let T : X — X such that fT =
Tfandforall,y € X,

d((FM@),TG) <35 (d(F), T() +d(FO). TG))) — 9(@(f (), T()), d(F 3, T()))
(1)

where ¢ : [0,00) X [0,00) — [0, ) is continuous and ¢(a, b) = 0 iff a = b = 0. Then there exists an
I-unique I-fixed point of T in X ..

Proof: Let x, € X be arbitrary. let x,, = T(x,,_;) = T"(x,),Vn € N.
If forsome n € N, f(x,,) = f(x,—1) , the proof is finished.

Let f(x,) = f(xp-1), VR EN.
From (1) we get

3668



';;;;3:3,;‘ Journal of The Gujarat Research Society

ISSN: 0374-8588
Volume 21 Issue 16, December2019

d(f Gtns1), %) = A((FT) (), T (xn-1))
< 2 (A(FGen) TOw)) + A(f Cner), T0no1)) ) = @ (A(f Cn), T ), A (F (tna), T (o))
()

< %(d(xn,f(xnﬂ)) + d(xn—l'f(xn)))

= d(f(xn+1)'xn) < d(f(xn);xn—l)'vn eEN
Therefore the sequence {d(f (x,,4+1), Xx,)} is monotone decreasing and bounded below, and hence is

convergent in R. Therefore there exists p > 0 such that lim d(f (x,41),x,) =P .
n—-oo
Taking n - o, from (2) we get

p < %(p +p) — @(p,p) (since ¢ is continuous ) .
This implies that 0 < ¢ (p,p) <0 = ¢@(p,p) =0 sothat p =0.

Therefore lim d(f(x,4+1),%,) =0 3)
n—-oo

Using (1), (3) and continuity and given property of ¢ , similarly, we shall get

711_13310 d(f(xn+2); xn) =0 (4)

We shall now show that T has an I-periodic point. If possible, let T has no I-periodic point.

Then f(x,) # f(xp) ,Vm,n €N with m#n.

In this case, we claim that {x,,} is I-cauchy. if possible let {x,,} is not I-cauchy. Then there exists € >
0 such that for a positive integer k, there exists integer n,, (> k) and the least positive integer m,; with
my, > ny > k such that d(f(xnk),xmk) > & 5)

Then d(f (xn,), Xmy-1) < € (6)

Now & < d(f(xnk)'xmk) = d(f(xmk)’xmk_z) + d(f(xmk_z)’xmk_l) + d(f(xmk—l)’xnk)

< d(f(xmk),xmk_z) + d(f(xmk_z),xmk_l) + ¢ (by (5) and (6) )

Then using (3) and (4), we get lim d(f (xn,), %m,,) = € (7

now d(f(xmk)’xnk) = d((fT)(xmk—l)'T(xnk—l))

< 5 (0 Cammr) ) + A CEngms) 20,)) = 9 (A0 Gamgmr). 5 ), A Gons). 3,
taking k — oo we get

£ <-(0+0) — (0,0) (by (3)and (7) and continuity of ¢ )

Therefore ¢ < 0 (by property of ¢ ), a contradiction.

Therefore {x,} is I-cauchy in X. Since X is I-complete, {x,} I-converges to some pointu in X.

Now d((FT) (), T(w)) < 2 (d(F (), T(e)) + d(F (), T(w) ) -
o(d(f Cn), T, d(F (), T(w))
(by (1))
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1
= d(f (n), TW) < 5 (AF Gendy i) + d(FQ, T(W)))

— (Af G, ), A(F (), T(W))) (8)
1
= d(f (), TW) < 5 (A0 Cn), 2011 + A(F @), T@W)))
= lim d(f (o), TW) < 3d(F @), T@W)) (by (3)) 9)

Let f(x,) # f(w) and (x,) = (fT)(u),vn = 2.

Then d(f(w), T(w)) < d(f(w), x,) + d(f (xn), Xns1) + A(f (Xn11), T(W))

= d(f(W),T(W) < lim d(f (ns1), T () (10)
(by (3) and since {x,} I-convergesto u)

From (9) and (10) we get

1
d(f W), T(w) < lim d(f (xn41), T@W) < Sd(fW), T(w)
= d(f(W,TW) = 0= (fN W) = f(w)

Therefore u is an I-fixed point of T so that u is an I-periodic point of T which contradicts the fact that
T has no I-periodic point.

Let for some positive integer r = 2, f(x,) = f(w) or f(x,) = (fT)(w)

Since T has no I-periodic point, hence f(u) # f(x,)

Now d((fT™) (w),u) = d((FT™)(xr),u) = d(f (Xn4r), 1)

or, d((fTM),u) = d((FT" ) (x),u) = d(f (Xpyr—1), ), ¥Yn €N (since fT =Tf).

Since r (= 2) is fixed, hence {x,,,}and {x,.,_1} are subsequences of {x,} and since {x,} I-
converges to u in X which is I-Housdorff, hence {x,,,}and {x,.,_,} both I-convergesto u .
Therefore lim d(f(xnr),u) =0 = lim d(f Censr-1) ).

Therefore lim d((fT™)(u),u) = 0 (since fT =Tf) (12)
n—-oo

Again since X is I-Housdorff and T has no I-periodic point, from (11) we have

lim d((fT™?)(w),u) = 0, (since fT =Tf). (12)

n—>oo

Since T has no I-periodic point, hence (fT5)(u) # (fTY)(w),Vs,t €N withs #t (13)
Using (13) and rectangular inequality, we have

d((FT™D W, T(w)) — d(f W, Tw)| < d(FT™H W), T W) + d((FT™H) (W), u)

taking n — co, we have lim d((fT )W), T(w)) = d(f(w), T(w)) (14)
(Using (3) and replacing x, by u)
Similarly we have 7liﬂr{}od((fT")(u),T(u)) =d(f(u),T(w)) (15)

Now d((fT™1)(w), T (w))

< 2 (d((FT™W), T(W) + d(f (W), T(w))) — p(d((FT™ @), TW)), d(f W), T(w))) (by (1))
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Taking n — oo, we get

d(f (), T(w) < %(d(f(u),T(u)) +d(fW),TW)) - ¢ (d(F @, TW),d(f W), Tw))
(by (14) , (15) and continuity of ¢ )

=0 <o (d(f@),T@W),d(f@),T@W)) < 0 = ¢ (d(F(), Tw)),d(f (), Tw))) = 0

= d(f(w),T(u)) =0 (by property of ¢ )

= (fT)(uw) = f(u) = u is an I-fixed point of T .so that u is an I-periodic pointof T , a
contradiction.

Therefore T has an I-periodic point. Therefore there exists u € X such that

(fT*)(w) = f(u) , forsome k € N (16)
If k = 1in (16), then (fT)(u) = f(w) and in this case u is an I-fixed point of T.

Let k > 1. Let (fT¥)(u) # (FT*"1)(w). Then d((fT¥~*) (), T*(w) ) > 0 so that
o (a(CTEHE, T W) (T D, THwW)) > 0
Now d(f (), 7)) = d((FT¥ W), (W) = d((FTI@), GT)(w)) (by (16)and T =T )

= a((FT)T @), T ) < 5 @TEH0, TEE)) + AT, T @)
~p(d((FT* 1 W), T* W), d((FTI W), T(T*))))
<3 @(FT* @, T*@))) + d(f (), Tw)) (by (16) and fT =Tf )
Therefore d(f(w), T(w)) < d((fT* 1) (w), T*(w))) (17)
Again d((FT*1) (), T* (W) = d((FT)(T*2w), T (w)))
<2(d(orrn e, T w) +a(CTEH W, W)
—p (a(¢THH 0, T @), a((TEH ), TEW)) by ()

< 2 (a(Grren e, 71 w) + a(UTE ), TE W)

= d((fTH W, T W) < d((FT*2) W), T () (18)
From (17) and (18) we get (f (u), T(w)) < d((FT*"2)(w), T*"*(w) ) (19)
Proceeding in this way, after finite number of steps, we get

d(f(w),T(w)) < d(f(w),T(w)) , a contradiction.

Therefore (fT*)(w) = (fT* 1) (w)

= (fT)(Tk‘l(u)) = f(Tk_l(u)) = T*1(u) is an I-fixed point of T .

Let there are two points x,y € X such that (fT)(x) = f(x) and (fT)(y) = f(y) .
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Now d(f(x),y) = d(f(0), f) = d(FD ), FT ) = d((FTI(x), T())

< %(d((fT)(x),T(X)) +d((FP), T)) — e(d((FTI), T(x)), d(FTY), T(¥)) (by (1))
=0

= d(f(x),y) =0=f(x) = ().

Therefore T has an I-unique I-fixed point in X .

Conclusion
Further study may be continued for generalization of various contractive conditions and fixed point
result.
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